Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37371522

RESUMO

BACKGROUND: The occurrence of accidental nerve damage during surgery and the increasing application of image guidance during head-and-neck surgery have highlighted the need for molecular targeted nerve-sparing interventions. The implementation of such interventions relies on the availability of nerve-specific tracers. In this paper, we describe the development of a truncated peptide that has an optimized affinity for protein zero (P0), the most abundant protein in myelin. METHODS AND MATERIALS: Further C- and N-terminal truncation was performed on the lead peptide Cy5-P0101-125. The resulting nine Cy5-labelled peptides were characterized based on their photophysical properties, P0 affinity, and in vitro staining. These characterizations were combined with evaluation of the crystal structure of P0, which resulted in the selection of the optimized tracer Cy5-P0112-125. A near-infrared Cy7-functionalized derivative (Cy7-P0112-125) was used to perform an initial evaluation of fluorescence-guided surgery in a porcine model. RESULTS: Methodological truncation of the 26-amino-acid lead compound Cy5-P0101-125 resulted in a size reduction of 53.8% for the optimized peptide Cy5-P0112-125. The peptide design and the 1.5-fold affinity gain obtained after truncation could be linked to interactions observed in the crystal structure of the extracellular portion of P0. The near-infrared analogue Cy7-P0112-125 supported nerve illumination during fluorescence-guided surgery in the head-and-neck region in a porcine model. CONCLUSIONS: Methodological truncation yielded a second-generation P0-specific peptide. Initial surgical evaluation suggests that the peptide can support molecular targeted nerve imaging.


Assuntos
Aminoácidos , Proteína P0 da Mielina , Animais , Suínos , Proteína P0 da Mielina/análise , Proteína P0 da Mielina/química , Proteína P0 da Mielina/metabolismo , Aminoácidos/análise , Fluorescência , Peptídeos/análise , Bainha de Mielina/metabolismo
2.
J Clin Med ; 12(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36769566

RESUMO

The targeted delivery of anti-cancer drugs and isotopes is one of the most pursued goals in anti-cancer therapy. One of the prime examples of such an application is the intra-arterial injection of microspheres containing cytostatic drugs or radioisotopes during hepatic embolization procedures. Therapy based on the application of microspheres revolves around vascular occlusion, complemented with local therapy in the form of trans-arterial chemoembolization (TACE) or radioembolization (TARE). The broadest implementation of these embolization strategies currently lies within the treatment of untreatable hepatocellular cancer (HCC) and metastatic colorectal cancer. This review aims to describe the state-of-the-art TACE and TARE technologies investigated in the clinical setting for HCC and addresses current trials and new developments. In addition, chemical properties and advancements in microsphere carrier systems are evaluated, and possible improvements in embolization therapy based on the modification of and functionalization with therapeutical loads are explored.

3.
Molecules ; 27(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558148

RESUMO

BACKGROUND: Surgically induced nerve damage is a common but debilitating side effect. By developing tracers that specifically target the most abundant protein in peripheral myelin, namely myelin protein zero (P0), we intend to support fluorescence-guided nerve-sparing surgery. To that end, we aimed to develop a dimeric tracer that shows a superior affinity for P0. METHODS: Following truncation of homotypic P0 protein-based peptide sequences and fluorescence labeling, the lead compound Cy5-P0101-125 was selected. Using a bifunctional fluorescent dye, the dimeric Cy5-(P0101-125)2 was created. Assessment of the performance of the mono- and bi-labeled compounds was based on (photo)physical evaluation. This was followed by in vitro assessment in P0 expressing Schwannoma cell cultures by means of fluorescence confocal imaging (specificity, location of binding) and flow cytometry (binding affinity; KD). RESULTS: Dimerization resulted in a 1.5-fold increase in affinity compared to the mono-labeled counterpart (70.3 +/- 10.0 nM vs. 104.9 +/- 16.7 nM; p = 0.003) which resulted in a 4-fold increase in staining efficiency in P0 expressing Schwannoma cells. Presence of two targeting vectors also improves a pharmacokinetics of labeled compounds by lowering serum binding and optical stability by preventing dye stacking. CONCLUSIONS: Dimerization of the nerve-targeting peptide P0101-125 proves a valid strategy to improve P0 targeting.


Assuntos
Proteína P0 da Mielina , Neurilemoma , Humanos , Proteína P0 da Mielina/química , Proteína P0 da Mielina/metabolismo , Dimerização , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...